توسعه مدل بنیش با ترکیب شبکه‌های عصبی مصنوعی و الگوریتم بهینه‌سازی حرکت تجمعی ذرات برای پیش‌بینی دستکاری سود

نویسندگان

  • حسین عسگری آلوج دانشجوی دکتری، گروه حسابداری، پردیس بین‌المللی ارس دانشگاه تهران، جلفا، ایران.
  • محمدرضا نیک بخت دانشیار، گروه حسابداری، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.
  • منصور مؤمنی استاد، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.
چکیده مقاله:

هدف: به باور بنیش (1999)، دستکاری سود زمانی رخ می‌دهد ‌که مدیریت، اصول پذیرفته‌شده عمومی حسابداری را ‌به‌منظور سودآور‌ نشان‌‎دادن عملکرد مالی شرکت نقض می‌کند. در این پژوهش، مدل بنیش با تأکید بر متغیرهای خارج از داده‌های‎‌‌ حسابداری، شامل عدم تقارن اطلاعاتی و بازار رقابت محصول، توسعه یافته است. روش: برای دستیابی به هدف پژوهش، داده‌های لازم برای 184شرکت پذیرفته‌شده در بورس اوراق بهادار تهران، طی سال‌های 1386 تا 1396 جمع‌آوری شدند. ضرایب مدل‌ها، به روش شبکه عصبی آموزش‌یافته با الگوریتم PSO برآورد شده‌اند. برای فراهم‌آوردن قابلیت مقایسه نیز، 10 اجرا با 300 تکرار در هر اجرا انجام گرفت و پس از هم‌گرایی، اجراها متوقف شدند. یافته‌ها: ‌توسعه مدل بنیش، خطای آموزش شبکه عصبی با الگوریتم حرکت تجمعی ذرات را از مقدار 0807/0 به 0777/0 کاهش داد.‌ همچنین، سطح زیرمنحنی راک در مدل بنیش، به‌ازای بهترین نقطه برش (5021/0) و بهترین دقت (26/60درصد) 5538/0 بود و این سطح در مدل توسعه‌یافته بنیش به‌ازای بهترین نقطه برش (5304/0) و بهترین دقت (42/67درصد) به 6335 /0 افزایش یافت. نتیجه‌گیری: نتایج حاکی از تصادفی‌بودن مدل بنیش و ناتوانی در تفکیک دو گروه شرکت‌های دستکاری‌کننده سود و غیردستکاری‌کننده سود است. همچنین، نتایج افزایش قدرت مدل توسعه‌یافته بنیش در قیاس با مدل اصلی را نشان می‌دهد؛ اما نتیجه آزمون ضعیف است و نشان می‌دهد که مدل توسعه‌یافته بنیش نیز در تفکیک دو گروه شرکت‌های دستکاری‌کننده سود و غیردستکاری‌کننده سود، کمابیش یک مدل تصادفی است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش‌بینی سود هر سهم: ترکیب شبکه‌های عصبی مصنوعی و الگوریتم بهینه‌سازی حرکت تجمعی ذرات

انتظارات مربوط به سود اثرات قابل ملاحظه‌ای بر تصمیمات مدیران و سرمایه­گذاران دارد. یکی از معیار‌هایی که امروزه به عنوانشاخص سود‌آوری شرکت­ها مورد توجه قرار می‌گیرد، مفهوم سود هر سهم است.­سود هر سهم آثار عمده‌ای بر قیمت سهام شرکت­‌ها نیز دارد. از اینرو پیش‌بینی سود هر سهمهم برای سرمایه‌گذاران و هم برای مدیران از اهمیت بسزایی برخوردار است. هدف از انجام این پژوهش، مدل­بندی پیش­بینی سود هر سهم شرکت...

متن کامل

پیش بینی سود هر سهم: ترکیب شبکه های عصبی مصنوعی و الگوریتم بهینه سازی حرکت تجمعی ذرات

انتظارات مربوط به سود اثرات قابل ملاحظه ای بر تصمیمات مدیران و سرمایه­گذاران دارد. یکی از معیار هایی که امروزه به عنوانشاخص سود آوری شرکت­ها مورد توجه قرار می گیرد، مفهوم سود هر سهم است.­سود هر سهم آثار عمده ای بر قیمت سهام شرکت­ ها نیز دارد. از اینرو پیش بینی سود هر سهمهم برای سرمایه گذاران و هم برای مدیران از اهمیت بسزایی برخوردار است. هدف از انجام این پژوهش، مدل­بندی پیش­بینی سود هر سهم شرکت...

متن کامل

شناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF

هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران می­باشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و داده­های واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا داده­های مربوط به 316 شرکت از نخستین رو...

متن کامل

ترکیب شبکه عصبی، الگوریتم ژنتیک و الگوریتم تجمع ذرات در پیش‌بینی سود هر سهم

پیش‌بینی سود هر سهم از اهمیت فراوانی برای سرمایه‌گذاران و مدیران داخلی شرکت‌ها برخوردار است. بررسی پژوهش‌های قبلی حاکی از این بوده است که در اکثر آن‌ها، به فرضیه وجود رابطه غیرخطی میان سود وعوامل تعیین‌کننده آن توجه نشده است. این در حالی است برخی از پژوهشگران نشان داده‌اند که رابطه میان سود و عوامل تعیین‌کننده آن خطی نیست. به همین دلیل و همچنین نقش محوری سود هر سهم در تصمیمات سرمایه‌گذاران، با ...

متن کامل

بهینه‎سازی پرتفوی سهام با استفاده از روش حرکت تجمعی ذرات

مسئله بهینه‏سازی‏ مارکویتز و تعیین مرز کارای سرمایه‏گذاری، زمانی‎که تعداد دارایی‏های قابل سرمایه‏گذاری و محدودیت‏های موجود در بازار ‏کم باشد، توسط مدل‏های ریاضی حل‎شدنی است. اما هنگامی‏که شرایط و محدودیت‏های دنیای واقعی در نظر گرفته شود، مسئله بهینه‏سازی پرتفوی به‎راحتی با استفاده از شیوه‏های ریاضی ‎حـل نمی‏شود. به‎همین دلیل استفـاده از شیوه‏های ابتکاری همچون شبکه‏های عصبی و الگوریتم‏های تکاملی...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 26  شماره 4

صفحات  615- 638

تاریخ انتشار 2020-02-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023